skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferraz, Henrique"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary This paper proposes an intermittent model‐free learning algorithm for linear time‐invariant systems, where the control policy and transmission decisions are co‐designed simultaneously while also being subjected to worst‐case disturbances. The control policy is designed by introducing an internal dynamical system to further reduce the transmission rate and provide bandwidth flexibility in cyber‐physical systems. Moreover, aQ‐learning algorithm with two actors and a single critic structure is developed to learn the optimal parameters of aQ‐function. It is shown by using an impulsive system approach that the closed‐loop system has an asymptotically stable equilibrium and that no Zeno behavior occurs. Furthermore, a qualitative performance analysis of the model‐free dynamic intermittent framework is given and shows the degree of suboptimality concerning the optimal continuous updated controller. Finally, a numerical simulation of an unknown system is carried out to highlight the efficacy of the proposed framework. 
    more » « less